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Abstract

This report presents some results and findings of our work on very-low-
bit-rate video compression systems using vector quantization (VQ). We
have identified multiscale segmentation and variable-rate coding as two
important concepts whose effective use can lead to superior compression
performance. Two VQ algorithms that attempt to use these two aspects
are presented: one based on residual vector quantization and the other on
quadtree vector quantization. Residual vector quantization is a successive
approximation quantizer technique and is ideal for variable-rate coding.
Quadtree vector quantization is inherently a multiscale coding method.
The report presents the general theoretical formulation of these algorithms,
as well as quantitative performance of sample implementations.
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1. Introduction: Very-Low-Bit-Rate Video Coding for the Digital
Battlefield

Battlefield digitization—the process of representing all components of a
battlefield in digital form—allows the battlefield and its components to
be visualized, simulated, and processed on computer systems, making the
Army more deadly and reducing the use of physical resources. For com-
plete battlefield digitization, images of various modalities must be gath-
ered by different imaging techniques. These images are then processed to
provide important information about the imaged areas.

An important class of visual data is the image sequence or video, and
forward-looking infrared (FLIR) video is an important source of informa-
tion. These data consist of a series of two-dimensional images captured
at a constant temporal rate. The main drawback to effective use of this
data source is the huge amount of raw digital data (bits) required to repre-
sent them. This volume of data makes real-time gathering and transmission
over tactical internets impractical.

To effectively combat this problem, data compression is used: that is, tech-
niques to reduce the number of bits required to represent the data. The
large compression ratios needed to ”squeeze” video over low-bandwidth
digital channels require the use of ”lossy” image compression techniques.
Lossy compression techniques use a very small number of bits to represent
the data at the cost of degraded information. These techniques require a
trade-off between video quality and bit-rate constraints.

For intelligent compression of FLIR video images, the bit assignment should
be made so that more bits are assigned to active areas, while fewer are as-
signed to passive background areas. Vector quantization (a block quantiza-
tion technique) has this type of adaptability, so that it is highly suitable for
compressing FLIR video.

In the work reported here, we systematically study the use of vector quan-
tization for compressing video sequences. Results are shown for both FLIR
video and regular gray-scale video. (A single representative frame of the
original FLIR video scene and its compressed representation are shown in
fig. 1.) We specifically study two adaptive vector quantization techniques:
the residual vector quantizer (VQ) and the quadtree VQ. These two tech-
niques permit the encoding of sources at different levels of precision de-
pending on content.
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Figure 1. Original (top) and compressed (bottom) representations of a frame from a FLIR
video sequence.

The targeted bit rate is in the very low (5 to 16 kb/s) range; this rate allows
the compressed video to be transmitted over SINCGARS (Single-Channel
Ground to Air Radio System) channels, as well as permitting multiple video
streams to be multiplexed and transmitted over Fractional T1 lines. Such
multiplex transmission would allow the video to be collected by sources
such as unmanned airborne vehicles (UAVs) and transmitted to processing
centers in real time.
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2. Background

Images are represented in the digital domain by a matrix/array of intensity
values, and video sequences are represented by a series of matrices. These
matrices are often large, requiring large amounts of storage space and/or
transmission bandwidth. When resources are limited (storage spaces or
bandwidth), it is essential to reduce the amount of data necessary for repre-
senting the digital imagery. Data can be reduced (compressed) either with
no loss in data (lossless compression) or with some degradation/distortion
of the data (lossy compression). In lossless compression, redundancy in the
data is removed, resulting in a smaller representation, but the ratio of com-
pression that can be achieved is small. On the other hand, lossy compres-
sion techniques trade off the compression ratio against the tolerated dis-
tortion. Most current image- and video-compression techniques are lossy,
since human visual perception can tolerate a certain amount of distortion in
the presented visual data. Lossy compression can be achieved by quantiza-
tion, a lossy compression technique in which data are represented at lower
numerical precision than in the original representation.

2.1 Quantization

A quantization Q of a random variable X ∈ R is a mapping from R to C, a
finite subset ofR:

Q : R 7→ C, C ⊂ R. (1)

The cardinalityNC of the set C gives the number of quantization levels. The
mapping Q is generally a staircase function, as shown in figure 2, whereR
is divided into NC segments [bi − 1, bi), i = 1, . . . , N . Each Xn ∈ [bi − 1, bi)
is mapped to ci ∈ C, where ci is the reconstruction value.

A sequence of random variables Xn can be quantized by two different
methods. The first method involves each individual member of the se-
quence being quantized separately by the quantizer Q defined above. This
method is called scalar quantization. In the second method, the sequence is
grouped into blocks of adjacent members, and each block (a vector) is quan-
tized by a vector quantizer. In the work reported here, vector quantization
(sect. 3) is applied to video compression.
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Figure 2. Scalar quantizer Q of a random variable Xn.

2.2 Video Compression

A video sequence is a three-dimensional signal of light intensity, with two
spatial dimensions and a temporal dimension. A digital video sequence is
a three-dimensional signal that is suitably sampled in all three dimensions;
it is in the form of a three-dimensional matrix of intensity values. A typical
video sequence has a significant amount of correlation between neighbors
in all three dimensions. The type of correlation in the temporal dimension
is significantly different from that in the spatial dimensions.

There are many different approaches to video compression, and some in-
ternational compression standards have been established. Among the dif-
ferent approaches is a class of algorithms that first attempt to remove cor-
relations in the temporal domain and then deal with removing correlations
in the spatial dimensions. Among these is motion compensation (MC), a
popular technique to remove the correlations in the temporal domain. Mo-
tion compensation results in a residue sequence, which is then quantized
by two-dimensional quantization techniques similar to those used for com-
pressing still images.

2.3 Motion Compensation

A video scene usually contains some motion of objects, occlusion/exposure
of areas due to such motion, and some deformation. The rate of these
changes is typically much smaller than the frame rate (i.e., the rate of sam-
pling in the temporal dimension). Therefore, there is very little change be-
tween two adjacent frames. A motion-compensation algorithm exploits this
consistency to approximate the current frame by using pieces from the
previous frame. The result is a reasonable approximation of the current
frame based on the previous one, with some side information in the form
of motion vectors. The difference between the approximation of the cur-
rent frame and the actual frame is quantized by a set of scalar or vector
quantizers.
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In figure 3, which shows the block diagram of the encoder and decoder, the
difference between the approximation and the original is quantized by the
quantizer Q. The encoder is a closed-loop system, as shown in the block di-
agram; it contains both a quantizer Q and an inverse quantizer Q−1. Since
the encoder uses the previous frame to approximate the current frame, the
decoder needs the previous frame to generate the current frame. The de-
coder has only the quantized version of the previous frame and not the
original frame. The inverse quantizerQ−1 in the encoder duplicates the de-
coder states at the encoder and gives the encoder access to a quantized
version of the previous frame. The encoder uses this quantized version
of the previous frame to generate an approximation of the current frame.
This ensures that the approximation of the current frame generated from
the previous frame is the same at both the encoder and decoder. Figure 4
shows the entropy of a sequence after (1) decorrelation by taking the frame
difference and (2) decorrelation using block motion estimation. It can be
seen that the entropy in this case is reduced by a factor of two compared
to the original frame entropy. Between frames 105 and 120, the entropy of
the residue due to motion estimation is significantly less than the entropy
of the residue from frame differencing. This difference is due to significant
motion of objects in the images during that period.

+

MC

+

Delay
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Encoder Decoder

Figure 3. Motion compensation (MC) for video coding.
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Figure 4. Entropy of a sequence after decorrelation in temporal dimension.
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3. Vector Quantization

A vector quantizerQ is a mapping from a point in k-dimensional Euclidean
space Rk into a finite subset C of Rk containing N reproduction points or
vectors:

Q : Rk 7→ C.
TheN reproduction vectors are called codevectors, and the set C is called the
codebook. C = (c1, c2, . . . , cn), and ci ∈ Rk for each i ∈ T = {1, 2, . . . , N}.
The codebook C has N distinct members. The rate of the VQ, r = log2(N),
measures the number of bits required to index a member of the codebook.

A VQ partitions the spaceRk into cellsRi:

Ri = {X ∈ Rk : Q(X) = ci}∀i ∈ T.

These cells represent the pre-image of the points ci under the mapping Q,
i.e.,Ri = Q−1(ci). These cells have the following properties:

∪iRi = Rk,

Ri ∩Rj = {∅}∀i 6= j.

These properties imply that the cells are disjoint and that they cover the
entire spaceRk.

The VQs dealt with here have the following additional properties:

• They are regular. The cells of a regular VQ, Ri, are convex, and ci ∈
Ri.
• They are polytopal. The cells of a polytopal VQ are polytopal. Poly-

topes are geometric regions bounded by hyperplane surfaces. A poly-
topal region is the intersection of a finite number of subspaces.

• They are bounded. A VQ is bounded if it is defined on a bounded
domain B ⊂ Rk; i.e., every input vector X lies in B.

A VQ consists of two operators, an encoder and a decoder. The encoder
γ associates every input vector X to i, which is some member of the in-
dex set T . The decoder β associates the index i to ci, some member of the
reproduction set C:
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γ : Rk 7→ T,

β : T 7→ Rk,
Q(X) = β(γ(X)).

The block diagram of the VQ is shown in figure 5. The encoding operation
is completely determined by the partition of the input space. The encoder
identifies the cell to which a given input vector belongs. The decoding op-
eration is determined by the codebook. Given the cell to which the input
vector belongs, the decoder determines the reproduction vector that best
represents the input vector. The decoder is very often in the form of a sim-
ple lookup table. Given the index, the table returns the vector entry corre-
sponding to the index.

Encoder DecoderiX Q(X)
Input
vector

Channel
symbol

γ β Approximation of
input vector

Figure 5. Encoder/decoder model of a VQ.

3.1 Quantization Error of Vector Quantizers

The performance of a VQ can be evaluated by the average distortion in-
troduced by encoding a set of training input vectors. Ideally, the distortion
should be zero. The output of the decoder should be a close representation
of the input vector. The expected value of the distortion measure represents
the performance of the quantizer:

D = E(d(X, Q(X))),

where d(X, Q(X)) represents the distortion introduced by the quantizer for
the input vector X.

One important distortion measure is the squared-error distortion measure
(Euclidean distortion/L2 distortion). This distortion measure is especially
relevant to image coding problems, where the mean squared error is widely
used as a quantitative measure of the performance of coding:

d(X, Q(X)) = ||X−Q(X)||2,
D = E(||X−Q(X)||2).

Other distortion measures include the weighed squared-error distortion
measure, the Mahalanobis distortion measure, and the Itakura-Saito dis-
tortion measure.
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3.2 Optimality Conditions for Vector Quantizers

An optimal VQ is one that minimizes the overall distortion measure for
any vector X with a probability distribution P (X). A VQ has to satisfy two
optimality conditions to achieve this minimum distortion:

• For a given fixed decoder β, the encoder γ should be the one that
minimizes the overall distortion.

• For a given fixed encoder γ, the decoder β should be the best possible
decoder.

3.2.1 Nearest-Neighbor Condition

Given a decoder, it is necessary to find the best possible encoder. The de-
coder contains a finite set of vectors C, one of which is used to represent the
input vector. For a given vector X, the vector ci is the nearest neighbor if

d(X, ci) ≤ d(X, cj) ∀ cj ∈ C.

The overall distortion for a given fixed codebook C is given by

D = E(d(X, Q(X))),

D =
∫

d(X, Q(X))P (X) dX;

clearly, ∫
d(X, Q(X))P (X) dX ≥

∫
d(X, ci)P (X) dX,

where ci is the nearest neighbor of X. Therefore, the best possible encoder
for a given decoder is the nearest-neighbor encoder.

3.2.2 Centroid Condition

For a fixed encoder, it is necessary to find the reproduction codebook that
minimizes the overall distortion. For a given cell Ri, the centroid ci is de-
fined as

D(X, ci) ≤ D(X, c) ∀X, c ∈ Ri, ci ∈ Ri.
For a given probability distribution, and for a given encoder, the overall
distortion is given by

D =
∫

d(X, Q(X))P (X) dX,

D =
∑
i

∫
Ri

d(X, c)P (X) dX.
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Clearly,

∑
i

∫
Ri

d(X, c)P (X) dX ≥
∑
i

∫
Ri

d(X, ci)P (X) dX.

Therefore, for a given encoder, the optimum decoder is the centroid of the
nearest-neighbor partitions.

Consider the set A of all possible partitions of the input vectors, and a col-
lection Co of all possible reproduction sets. The optimum VQ is the pair

({Ri}, C); {Ri} ∈ A and C ∈ Co,

such that Ri is the nearest neighbor partition of C that contains the cen-
troids of the partitions in Ri. These two conditions are generalizations of
the Lloyd-Max conditions for scalar quantizers.

3.3 Design of Vector Quantizers

Design of VQs is a very difficult problem. For a given probability dis-
tribution P (X), it is necessary to find the encoder and decoder that si-
multaneously satisfy both the nearest-neighbor condition and the centroid
condition. Unfortunately, no closed-form solutions exist for even simple
distributions.

A number of methods have been proposed for the design of VQs. All these
are iterative methods based on finding the best VQ for a training set.

3.3.1 Generalized Lloyd’s Algorithm

The generalized Lloyd’s algorithm (GLA) (also known as the LBG algo-
rithm after Linde, Buzo, and Gray [1]) is an iterative algorithm. This algo-
rithm, which is similar to the k-means clustering algorithm, consists of two
basic steps:

• For a given codebook Ct, find the best partition {Ri}t of the training
set satisfying the nearest-neighbor neighborhood condition.

• For the new partition {Ri}t, find the best reproduction codebook Ct+1

satisfying the centroid condition.

These two steps are repeated until the required codebook is obtained. The
training algorithm begins with an initial codebook, which is refined by the
Lloyd’s iterations until an acceptable codebook is obtained. A codebook is
considered acceptable if the error difference between the present and the
previous codebooks is less than a threshold.
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3.3.2 Kohonen’s Self-Organizing Feature Map

Kohonen’s self-organizing feature maps (KSOFMs) can be used to design
VQs with optimal codebooks [2,3]. In this method of codebook design, an
energy function for error is formulated and minimized iteratively. This de-
sign procedure is sequential, unlike GLA, which uses the batch method of
training.

3.4 Entropy-Constrained Vector Quantizer

For transmission over a binary channel, the index of the reproduction vec-
tor from a codebook C of size N is represented by a binary string of length
dlog2Ne bits. Often, it is possible to further reduce the number of bits re-
quired to represent the indices by using entropy coding as shown in fig-
ure 6. Entropy coding reduces the transmission entropy rate from dlog2Ne
per block to almost the entropy rate of the index sequence. Since typical
codebook design algorithms do not consider the possible entropy rates of
the index sequences, the codebooks do not combine with an entropy coder
in an optimal way. Design of entropy-constrained VQs (ECVQs) has been
studied by Chou et al [4] (among others), who used a Lagrangian formu-
lation with a gradient-based algorithm similar to the Lloyd’s algorithm to
design the codebooks.

Consider a vector X ∈ Rk quantized by a VQ with a codebook C = {cj :
j = 1, . . . , N}. Let l(i) represent the length of the binary string used to
represent the index i of the reproduction vector ci of X. Then the energy
function that is minimized in the design of an ECVQ is given by [4]

J(γ, β) = E[d(xi, Q(xi)] + λE[l(i)], (2)

where γ and β are the VQ encoder and decoder, respectively. The index en-
tropy log(1/p(i)) is used in the algorithm to represent the length of the bi-
nary string required to represent the index i. The codebook is then designed

Encoder

γ

Decoder

β

X

Input
vector

Q(X)

Approx. of
input vector

Entropy
encoder

Entropy
decoder

Figure 6. Entropy coding of VQ indices.
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in an iterative manner, similar to the Lloyd’s algorithm, through choosing
an encoder and decoder that decrease the energy function in equation (2)
at every iteration. Experimental results have shown that the ECVQ design
algorithm described above gives an encoder-decoder pair that has superior
numerical performance.

3.5 Video Compression Using Vector Quantization

The residual signal obtained after motion compensation can be compressed
by vector quantization. The two-dimensional signal is divided into blocks
of equal size, as shown in figure 7. The VQ encoder that is used to compress
the residual signal is a nearest-neighbor encoder. It has a reference lookup
table that contains the centroids of the VQ partitions. The encoder com-
pares each block (in some predefined scanning order) with each member
of the lookup table to find the closest match in terms of the defined dis-
tortion measure (usually the mean-squared error). The index of the closest
matching codevector in the lookup table is then transmitted/stored as the
compressed representation of the corresponding vector (block).

The decoder is a simple lookup table decoder, as shown in figure 8. The
decoder uses the index symbol generated by the encoder as a reference to
an entry in a lookup table in the decoder. The lookup table in the decoder
is usually identical to the one in the encoder. This lookup table contains the
possible approximations for the blocks in the reconstructed image. Based
on the index, the approximate representation of the current block is deter-
mined. To generate the reconstructed two-dimensional array, the decoder
places this representation at the position corresponding to the scanning or-
der. The reconstructed array is used along with the motion-compensation
algorithm to reproduce the compressed video sequence.

γ

Image divided into blocks

Nearest-
neighbor
encoder

γ

Lookup
table

Channel
symbol

Figure 7. VQ encoder for two-dimensional arrays.
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Channel
symbol

Reconstructed image

Table
lookup

decoder
β

Lookup
table

Figure 8. VQ decoder for two-dimensional arrays.
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4. Residual Vector Quantization

Residual vector quantization (RVQ) is a structured vector quantization
scheme proposed mainly to overcome the search and storage complexities
of regular VQs [5,6]. Residual VQs are also known as multistage VQs. They
consist of a number of cascaded VQs. Each stage has a VQ with a small
codebook that quantizes the error signal from the previous stage. Residual
quantizers are successive-refinement quantizers, where the information to
be transmitted/stored is first approximated coarsely and then refined in
the successive stages.

4.1 Residual Quantization

Consider a random variable X with a probability distribution function
P (X). Let Q1(X) be an N1 level quantizer and its associated bit rate be
log2(N1) bits. The error due to this quantizer is

R1 = X1 −Q1(x1),

and the expected value of the distortion is given by

D1 =
∫

d(X1,Q1(X1))P (X1) dX1.

If the random variable needs to be represented more precisely (i.e., if the
expected value of the distortion needs to be smaller), the first-stage residue
can be quantized again by a second quantizer Q2. The quantizer Q2 ap-
proximates the random variable R1. Let Q2(R1) be an N2 level quantizer,
and its associated bit rate be log2(N2) bits. The error due to this quantizer
is given by

R2 = R1 −Q2(R1),

and the expected value of distortion is now

D2 =
∫

d[X, (Q1(X) + Q2(R1))]P (X) dX.

This process can be thought of as a cascade of two quantizers, as shown in
figure 9. The total bit rate of the quantization scheme is log2(N1)+log2(N2).

13



Σ
X Q1(X) Q2(R1)R1

Q1 Q2

Figure 9. Residual quantizer—cascade of two quantizers.

This scheme can be extended to any number of quantizers. AK-stage resid-
ual quantizer consists of K quantizers {Qk : k = 1, . . . ,K}. Each quantizer
Qk quantizes the residue of the previous stage, R(k−1). The total bit rate of
the quantization scheme is given by

B =
K∑
k=0

log2(Nk),

where Nk is the number of quantization levels of the quantizer Qk.

4.2 Residual Vector Quantizer

A residual VQ is a vector generalization of the residual quantizer outlined
above. A K-stage residual VQ is composed of K VQs {Qk : k = 1, . . . ,K}.
Each VQ consists of its own codebook Ck of size Nk. The kth-stage VQ
operates on the residue R(k−1) from the previous stage. The residue due to
the first stage is given by

R1 = X−Q1(X).

The final quantized value of the vector X is given by

Q(X) = Q1(X) + Q2(R1) + . . .+ Qk(R(k−1)) + . . .+ QK(R(K−1)).

4.3 Search Techniques for Residual Vector Quantizers

The structure of a residual VQ inherently lends itself to a number of possi-
ble encoding schemes. Two of the main characteristics of encoding in resid-
ual quantizers are

• overall optimality—the least overall distortion at the end of the last
stage of encoding, and

• stage-wise optimality—the least distortion possible at the end of each
stage.

14



4.3.1 Exhaustive Search

Exhaustive search in residual quantizers aims at achieving the least over-
all distortion. In exhaustive search schemes, all possible combinations of all
the stage quantizations are searched, and the combination giving rise to the
least distortion is chosen. This search gives the best possible performance
in the residual quantization scheme. But this search scheme is computa-
tionally very expensive and is the same as that of an unstructured VQ. The
search complexity for a K-stage VQ with codebook sizes {N1, N2, . . . NK}
is of the order O(N1 × N2 × . . . NK). Exhaustive search schemes are not
particularly appropriate for progressive transmission schemes (successive
refinement).

4.3.2 Sequential Search

Sequential search in residual quantizers makes full use of the structural
constraint of the quantizer. The search process is stage by stage, wherein
the quantization value that minimizes the distortion up to that stage is
chosen. This search scheme is inherently inferior to exhaustive schemes,
leading usually to suboptimal overall distortion performance. It is also the
least expensive of all search schemes. The search complexity for a K-stage
quantizer with codebook sizes {N1, N2, . . . NK} is of the orderO(N1 +N2 +
. . . NK). The search scheme is particularly well-suited for progressive trans-
mission schemes.

4.3.3 M -Search

A hybrid search scheme, M -search, has been proposed [7] whose search
complexity is less than that of a full search, but greater than that of a se-
quential. This scheme produces overall distortion performance that is bet-
ter than that of sequential search schemes and close to that of the exhaustive
search scheme. In this scheme, a subset of the quantization values is chosen
at each stage based on the least distortion; these subsets are searched in an
exhaustive fashion to get the quantized value.

4.4 Structure of Residual VQs

A quantizer partitions an input space into a finite number of polytopal
regions (fig. 10). The centroid of each polytope approximates all the in-
put symbols that belong to that particular region. The process of finding
the residue of the signal is equivalent to shifting the coordinate system to
the centroid of the polytope. This process is repeated for all the polytopes.
Therefore, we have a finite set of spaces, each corresponding to a polytope.
These spaces are bounded by the underlying polytope of the partition; i.e.,
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Figure 10. Structure of a residual VQ.

each of these spaces contains members around the origin that are limited
in location by the polytope to which they belong.

Now consider the quantization of each of these spaces. If the optimal quan-
tizer is found for each of these spaces, their structures (i.e., the partition of
the input space) may be totally different. Such a quantizer is called a tree-
structured quantizer. If a constraint is imposed such that the same partition
structure is used for all the subspaces, then the method of quantization is
the residual quantization scheme.

4.5 Optimality Conditions for Residual Quantizers

4.5.1 Overall Optimality

Consider a K-stage residual quantizer with a set of quantizers Q,

Q = {Q1, Q2, . . . , Qk, . . . Qn}

and codebooks C,
C = {C1, C2, . . . , Ck, . . . Cn},

with stage indices K = {k : k = 1 . . .K}. Each stage codebook Ck contains
Nk codevectors Ck = {ck1, ck2, . . . , ckNk}. As with VQs, we derive two op-
timality conditions. For the first condition, given the encoder, we find the
best possible decoder. For the second condition, we find the best possible
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encoder for a given decoder. We derive the conditions for a particular stage,
assuming that all other stages have fixed encoders and decoders.

Centroid condition:
The index vector I belongs to the index space I = {I : I =
(i1, i2, . . . , ik, . . . iK), ik = 1, . . . , Nk}. Let the partition of the input space
be PI = Pc1

i1
,c2
i2
,...,ck

ik
,...,cK

iK
, based on the different stage quantizers. This

partition is based on a fixed encoder. To find the best decoder for the stage
κ, let the decoders of stages {K|κ} be fixed. Overall distortion is given by

D(X,Q(X)) =
∑
I∈I

∑
PI

(X− c1
i1 − c2

i2 . . .− cκ−1
iκ−1 − cκiκ − cκ+1

iκ+1 . . .− cKiK )2P (X). (3)

For the codevector cκικ of the κth stage to be optimal, the following has to
be true:

δD(X,Q(X))
δcκικ

= 0; (4)

that is,∑
I∈Iικ

∑
PI

(X− c1
i1 − c2

i2 . . .−−cκ−1
iκ−1 − cκικ − cκ+1

iκ+1 . . .− cKiK )P (X) = 0, (5)

where Iιk = {I ∈ I : ik = ιk}. Solving for cκικ , we get

cκικ =
∑

I∈Iικ
∑
PI

(X− c1
i1 − c2

i2 . . .−−cκ−1
iκ−1 − cκ+1

iκ+1 . . .− cK
iK

)P (X)∑
I∈Iικ

∑
PI
P (X)

. (6)

A similar equation has been derived elsewhere [7]. This result has been
described [7] as the centroid of the grafted residue.

Nearest-neighbor condition:
For fixed decoders and fixed encoders for stages K|κ, the optimal stage κ
encoder is one that either minimizes the overall distortion or minimizes
the distortion for that stage. In either case, the mapping that produces the
least distortion is the nearest-neighbor mapping. For exhaustive search de-
coders, the best encoder is the nearest-neighbor mapping for the direct-sum
codebook.

4.5.2 Causal Stages Optimality

For the encoder to be optimal in terms of quantizers up to the present stage,
the optimality conditions are as follows.

Centroid condition:
Let the partition of the input space be P ′I = Pc1

i1
,c2
i2
,...,cκ

iκ
, based on the
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causal stage quantizers. For a fixed encoder, the optimal κth stage code
is given by

cκικ =

∑
I∈I′

ικ

∑
P ′I(X− c1

i1 − c2
i2 . . .−−cκ−1

iκ−1 − cκ+1
iκ+1 . . .− cK

iK
)P (X)∑

I∈I′
ικ

∑
P ′I P (X)

, (7)

where I ′ικ = {I : I = (i1, i2, . . . , ik, . . . iκ), ik = 1, . . . , Nk} is the index
vector of the causal stages including the present stage; cκικ is the centroid of
the direct partition up to the κ stage.

Nearest-neighbor condition:
For fixed decoders and fixed encoders for stages K|κ, the optimal κth stage
encoder is the nearest-neighbor mapping encoder.

4.5.3 Simultaneous Causal and Overall Optimality

Consider the κth stage encoder of a K-stage residual VQ. Let us assume
that it is optimal in terms of both causal and overall distortion. Then it
satisfies the following two equations simultaneously:

cκικ =
∑

I∈Iικ
∑
PI

(X− c1
i1 − c2

i2 . . .−−cκ−1
iκ−1 − cκ+1

iκ+1 . . .− cK
iK

)P (X)∑
I∈Iικ

∑
PI
P (X)

, (8)

cκικ =

∑
I∈I′

ικ

∑
P ′I(X− c1

i1 − c2
i2 . . .−−cκ−1

iκ−1)P (X)∑
I∈I′

ικ

∑
P ′I P (X)

. (9)

The two denominators are equal; therefore,∑
I∈Iικ

∑
PI

(X− c1
i1 − c2

i2 . . .−−cκ−1
iκ−1 − cκ+1

iκ+1 . . .− cKiK )P (X) =

∑
I∈I′

ικ

∑
P ′I

(X− c1
i1 − c2

i2 . . .−−cκ−1
iκ−1)P (X). (10)

Simplification of equation (10) gives∑
I∈Iικ

∑
PI

(cκ+1
iκ+1 . . .− cKiK )P (X) = 0. (11)

Basically, for the encoder to have simultaneous global and stage-wise opti-
mality at any given stage κ, the sum of the codevectors of stages κ+ 1 . . .K
must equal zero. This suggests that a successive-refinement residual VQ is
not optimal. A rigorous treatment of successive approximation is given by
Equitz and Cover [8].
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4.6 Design of Residual Vector Quantizers

The design of residual VQs is based on a number of trade-offs, and differ-
ent training methods are used for different coding schemes [9]. Sequential
search quantizer codebooks in general are different from exhaustive search
quantizer codebooks. A number of design methods have been proposed.
Gupta et al [10] have proposed a joint codebook design in which all but one
stage is fixed, and one particular stage codebook is adapted to minimize
overall distortion. During the next step of the iteration, another codebook
is adapted; this step is repeated cyclically until the required convergence is
obtained. Barnes and Frost [7] use a similar algorithm for codebook design.
Rizvi and Nasrabadi [11] have proposed a design algorithm based on the
Kohonen network, where an energy is iteratively minimized to reduce the
overall distortion.

4.7 Residual Vector Quantization with Variable Block Size

The residual VQ outlined thus far quantizes blocks (vectors) of the same
size at each stage. When an input sequence to be quantized contains non-
stationary artifacts, it is often difficult to compress with fixed-block-size
quantizers. Blocks containing discontinuities are quantized rather poorly
by all the stages, or they require a large number of residual VQ stages. One
way to solve the problem is to use smaller block sizes at the later stages of
the residual VQ. A variable-block-size residual VQ is shown in figure 11. In
this figure, the first-stage quantizer uses blocks of size 4, the second-stage
quantizer uses blocks of size 2, and the third-stage quantizer uses blocks of
size 1 (the third-stage quantizer is a scalar quantizer in this example).

4.8 Pruned Variable-Block-Size Residual Vector Quantizer

Often not every part of a digital signal needs to be quantized by all the
stages of the residual VQ. Sections of the signal containing little or no in-
formation can easily be represented by just one or two stages. Restricting
the number of stages for a particular section of the signal is equivalent to
pruning the tree structure, as shown in figure 11. There are a number of dif-
ferent ways of pruning the tree. One significant characteristic of a pruned

Figure 11. Tree structure of variable-block-size residual VQ. Pruning of right tree corre-
sponds to variable-rate/variable-block-size residual VQ.
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variable-block-size residual VQ is that very-low-bit-rate side information
needs to be stored/transmitted. This side information determines the par-
ticular tree structure used for every block. The tree structure is required by
the decoder, as it needs to know the number of stages used for every part
of the sequence.

4.8.1 Top-Down Pruning Using a Predefined Threshold

This algorithm can decide the number of stages to be used for a particu-
lar block by examining the error after every stage. If the error at the end
of a particular stage is less than a threshold, then the quantization can be
stopped at that stage. The error is measured by a significance measure, such
as the L2 norm (mean squared error). If the L2 distance after stage κ is less
than a threshold τκ, then quantization is stopped at that stage. Choice of
the threshold determines the performance of this algorithm. When a single
global threshold τ = τ1 = . . . = τk = . . . = τK is used, it directly controls
the output bit rate of the quantizer.

4.8.2 Optimal Pruning in the Rate-Distortion Sense

Optimal pruning in the rate-distortion sense is a bottom-up pruning tech-
nique in which a given block is quantized by all the stages. The quanti-
zation error is measured after every stage and stored. For tree pruning,
the number of bits required to encode to a particular depth is traded off
against the distortion. Let T represent a set of all possible tree structures
and QT (X) be the quantized value of X corresponding to the tree structure
T . Let L(T ) represent the number of bits required to represent a particular
tree structure. For a particular tree structure T , let IT represent the set of
indices after quantization (based on the tree structure) and L(IT ) represent
the number of bits required to encode the indices. A Lagrangian formula-
tion can be made, and the tree can be pruned according to this objective
function. This technique is equivalent to finding a particular tree structure
that minimizes the following cost function:

d(X,Q(X)) + λ · (L(IT ) + L(T )). (12)

The value of the Lagrangian multiplier λ controls the output bit rate of
the quantizer. It controls the slope of the tangent to the R-D curve of the
quantizer at different operating points, as shown in figure 12.

4.9 Transform-Domain Vector Quantization for Large Blocks

Direct vector quantization of large blocks is computationally expensive,
and the design of the codebooks for large-block VQs is difficult. The com-
plexity of VQs can be reduced through transform vector quantization [12].
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Figure 12. Optimal pruning of residual VQ in rate-distortion sense.

The data vector is first transformed by a decorrelating transformation Φ,
such as the discrete cosine transform (DCT). A masking function M is then
applied to the transformed data to reduce the dimensionality of the vec-
tor. In its simplest form, the masking function is a binary vector, and it
truncates the number of coefficients used. The masking function can also
contain a normalizing factor for each coefficient based on its variance. The
resulting vector is then quantized by a small-vector-dimension quantizer.
For decoding, the inverse of the mask functionM−1 is first applied (usually
in the form of padding with zeros), followed by the inverse transform Φ−1.
Use of a unitary transform like the DCT, which compacts the signal energy
to a relatively small number of coefficients, leads to the requirement of a
VQ with much smaller dimensions. It is therefore possible to use transform
VQs in the initial stages of a variable-block-size residual VQ.

4.10 Video Compression Using Residual Vector Quantization

4.10.1 Theory of Residual Vector Quantization

The residual signal generated by the motion compensation algorithm, as
described in section 2.3, can be compressed by a residual VQ. This sec-
tion describes a particular implementation of an encoder using residual
vector quantization. In the first two stages of the encoder, quantization is
performed in the transform domain, as shown in figure 13. The residual
signal r0(i, j, t) is broken into blocks of dimension m1 × n1, represented by
R0(I, J, t). The algorithm measures variances of each block and compares
them to a threshold, to determine if the block needs to be encoded. Often,
the background areas contain no information, since the motion estimation
algorithm predicts the data perfectly. The vectors R0(I, J, t), which require
transmission, are then transformed to produce the transform-domain sig-
nalR0(I, J, t), through a transform operator Φ:

R0(I, J, t) = Φ[R0(I, J, t)]. (13)
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Figure 13. Video encoder based on residual vector quantization.

A masking operator M1 is then applied to the transformed vector to pro-
duce a truncated vector of reduced dimension, R0

m(I, J, t). This vector
R0
m(I, J, t) is quantized by the first-stage VQ. If c1

ι1 is the best matching
code vector, the approximation of R0(I, J, t) is given by

Q1[R0(I, J, t)] = Φ−1[M−1
1 (c1

ι1)], (14)

whereM−1
1 and Φ−1 are the inverses of the masking function and the trans-

form operator. The error after the first-stage quantization is given by

R1(I, J, t) = R0(I, J, t)−Q1[R0(I, J, t)]. (15)

This residual vector is measured for significance, and if it requires further
compression, a second mask M2 is applied to the transformed vector to
produce vector R1

m(I, J, t). This vector is quantized by the second-stage
VQ. If the best match codevector is c2

ι2 , the approximation of R0(I, J, t)
after the second stage is given by

Q2[R1(I, J, t)] = Φ−1[M−1
1 (c1

ι1) +M−1
2 (c2

ι2)]. (16)

The masking functionsM1 andM2 are binary templates, which together se-
lect the first few perceptually significant coefficients. The masking function
effectively creates a low-pass-filtered version of the signal by discarding the
higher frequency coefficients. The residue after the second stage is given by

R2(I, J, t) = R0(I, J, t)−Q2[R1(I, J, t)]. (17)
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This residual vector is then split into smaller blocks R′2(I ′, J ′, t) of dimen-
sionm2×n2 for quantization by the subsequent stages. The algorithm com-
pares the vectors R′2(I ′, J ′, t) with a threshold to determine if they are sig-
nificant enough to require transmission. The significant blocks that require
transmission are quantized by the second-stage VQ, which gives an ap-
proximation Q3[R2(I2, J2, t)]. The process of decomposition into smaller
blocks and selective quantization is applied recursively in the later stages,
so that good representation is obtained of the residual signal r0(i, j, t). The
indices of the quantizers are entropy coded by adaptive arithmetic coding
[13].

The block diagram in figure 14 shows that operation of the decoder is not
complex. The variable-length decoder recovers the bit maps and the code-
vector indices from the arithmetically encoded sequence. The decoders
are constructed with lookup tables. Based on complexity requirements,
the lookup tables of the first two stages can store either the transform-
domain coefficients c1

ι1 and c2
ι2 or the reconstruction vectors Φ−1[M−1

1 (c1
ι1)]

and Φ−1[M−1
2 (c2

ι2)]. In the first case, two additional operations—a padding
operation (M−1) and an inverse transform operation (Φ−1)—must be per-
formed. In the second case, memory requirements are significantly larger. If
the later-stage vectors are required, a direct table lookup is performed, us-
ing the indices, and the low-dimension vector is added to the first-stage re-
constructed vector in the appropriate position. This process provides the re-
constructed residual signal R̂0(I, J, t), which is then passed to the motion-
compensation stage to produce the reconstructed frame.

In order to achieve a true variable rate, the encoder makes decisions about
the number of quantization stages required by each stage. These decisions
have to be transmitted to the decoder for the encoded data to be decoded
correctly. The decisions are usually encoded as bit maps for each stage.
For a three-stage encoder, three bit maps are required for proper decod-
ing. These bit maps could require a significant portion of the bit budget if

Σ
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Motion vectors
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IDCT

Σ

Q–1

Q–1

Q–1

Variable-
length

decoder

Figure 14. Video decoder based on residual vector quantization.
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they are not intelligently encoded. The bit map at the first stage is combined
with the motion vector information so that the number of bits is reduced. If
the motion vector of a block is nonzero, it is assumed that the block needs
to be encoded by at least the first stage; thus, the overhead first-stage flag
bit for blocks with nonzero motion vectors is eliminated. The bit budget for
these bit maps can be further reduced by the use of correlation between the
second- and third-stage bit maps. Implementation details of an RVQ-based
video codec are given by Kwon et al [14].

4.10.2 Performance of an RVQ-Based Video Codec

Simulation results are given for an RVQ-based video encoder with the fol-
lowing parameters: the first-stage scalar quantizer (SQ) had 8 quantization
levels, the codebook size of the second-stage VQ was 16, and the codebook
size of the third-stage VQ was 128. The number of significant DCT coef-
ficients used was 9. Simulation results are given for the encoder/decoder
operating at three different very low bit rates. The results are compared
with those obtained with the H.263 codec [15,16]. For the H.263 codec, all
negotiable options were turned on (except for “PB frames”), so that we
could make a reasonable comparison with the RVQ codec (the PB frame
mode can be easily incorporated in the RVQ codec). In the H.263 codec,
the quantization parameter (QP) for the first frame was set to its maximum
value, so that the codec would give the best performance for the “intra-
frame.” Since we were interested in the steady-state characteristics and not
the first few transient frames, the bits consumed in the first frame were not
included in the bit-rate calculations. The sequences used were those of the
popular “salesman” test sequence. Each of these sequences has 8-bit pix-
els, with frame size 144×176, and the frame rate was 10 frames per second.
We evaluated performance by using the peak signal-to-noise ratio (PSNR)
measurement to compare the two coding methods. The computation re-
quirements for the RVQ codec include real-time DCT; these requirements
are the same as those of H.263. The transform-domain VQ has a codebook
of size 16; therefore, its computational complexity is small. Only about 10
percent (average over all the sequences tested) of the blocks were encoded
by the last VQ stage.

Forty motion-compensated difference frames extracted from four different
sequences (in which the test sequences were not included) were used to
train the codebooks. The codebooks were trained in a three-step process.
We first designed the scalar quantizer using the Lloyd’s algorithm. We then
generated the second- and third-stage initial codebooks using the k-means
algorithm. Finally, we retrained the three quantizers using the entropy con-
straint in a closed-loop manner to improve the rate-distortion performance.
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The rate-distortion performance of the two codecs is shown in figure 15(a),
which demonstrates that the RVQ codec outperformed H.263 at all three
bit rates. At very low bit rates, the PSNR for H.263 decreases drastically,
while that of the RVQ codec decreases gradually. The performance on the
H.263 codec for the salesman sequence decreases dramatically at very low
bit rates, because of the rather large motion in this sequence. In contrast,
the RVQ codec handles such sequences very well at very low bit rates. Fig-
ures 15(b), (c), and (d) show the PSNR results of each reconstructed frame
at three different bit rates. Since no rate control is used, a variable-bit-rate
(VBR) bit stream with constant quality is generated. Figures 16(b), 17(b),
and 18(b) show the reconstructed 48th frames for the salesman sequence
compressed at the three different bit rates by the RVQ encoder. Figures
16(d), 17(d), and 18(d) show the reconstructed frames compressed by the
H.263 encoder at the same bit rates. It can be clearly seen (especially at 5.4
kb/s) that H.263 suffers from blocking and smoothing, while the output of
the RVQ codec is of much better visual quality.

25



(a) (b)

30

30.5

31

31.5

32

32.5

33

33.5

5 6 7 8 9 10 11 12 13

D
is

to
rt

io
n 

(d
B

)

Bit rate (kb/s)

RVQ
quadtree VQ

H.263

28

29

30

31

32

33

34

35

36

0 15 30 45 60 75 90 105 120 135 150

P
S

N
R

 (
dB

)

Frame number

RVQ
quadtree VQ

H.263

(c) (d)

28

29

30

31

32

33

34

35

0 15 30 45 60 75 90 105 120 135

P
S

N
R

 (
dB

)

Frame number

RVQ
quadtree VQ

H.263

27

28

29

30

31

32

33

34

0 15 30 45 60 75 90 105 120 135

P
S

N
R

 (
dB

)

Frame number

RVQ
quadtree VQ

H.263

Figure 15. Performance of video compression algorithms using vector quantization: (a) rate-distortion performance,
(b) PSNR results at 12 kb/s, (c) PSNR results at 8.1 kb/s, and (d) PSNR results at 5.3 kb/s.
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Figure 16. Results for bit rate of approximately 12 kb/s: (a) frame bit rate for sequence, (b) RVQ codec, (c) quadtree-VQ
codec, and (d) H.263 codec.
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Figure 17. Results for bit rate of approximately 8.1 kb/s: (a) frame bit rate for sequence, (b) RVQ codec, (c) quadtree-VQ
codec, and (d) H.263 codec.
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Figure 18. Results for bit rate of approximately 5.3 kb/s: (a) frame bit rate for sequence, (b) RVQ codec, (c) quadtree-VQ
codec, and (d) H.263 codec.
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5. Quadtree-Based Vector Quantization

A quadtree is a hierarchical data structure used to represent regions,
curves, surfaces, and volumes. Representations of regions by a quadtree
are achieved by the successive subdivision of the image array into four
equal quadrants. This process is known as a regular decomposition of an
array. An image is thus decomposed into homogeneous regions with sides
of lengths that are powers of two. A tree of degree 4 (each nonleaf has
four children) is generated to represent the image in terms of its homo-
geneous regions. The root node corresponds to the entire array, and each
child of a node represents a quadrant of the region represented by that
node. Leaf nodes of the tree correspond to those blocks for which no further
subdivision is necessary. The above segmentation procedure is known as a
top-down construction of the quadtree. Another possibility for construct-
ing a quadtree is a bottom-up procedure, where small blocks are merged
together recursively to form a larger block if they are homogeneous with
respect to the merging criterion.

The regular decomposition method does not necessarily correspond to the
segmentation of the image into maximal homogeneous regions. It is likely
that unions of adjacent blocks form homogeneous regions. To obtain these
maximal homogeneous regions, we must allow the merging of adjacent
blocks. However, the resulting partition will no longer be represented by
a quadtree; instead, the final representation is in the form of an adjacency
graph. (An alternative method to obtain maximal homogeneous regions is
to use a decomposition technique that is not regular: that is, it segments
the image into rectangular blocks of arbitrary size. Such a method would
require a different coding procedure for each block size.) Here, we use a
regular decomposition method because the resulting blocks are square; this
method reduces the complexity of the encoder, the decoder, and the num-
ber of bits required to represent the binary quadtree. The homogeneous
regions so obtained are thus not necessarily maximal.

5.1 Quadtree Decomposition

A quadtree decomposition results in an unbalanced tree structure with leaf
nodes of different sizes. In a regular decomposition, the leaf nodes are re-
stricted to square blocks. It is further possible to restrict the sides of the
leaf nodes to a small range of values. Such a restriction results in a tree
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structure with the leaf nodes being square blocks with a maximum of n dif-
ferent sizes. A signal decomposed by the above method can be compressed
by vector quantization of the leaf blocks. This will require n different VQs
corresponding to the different block sizes. All leaf nodes of the same size
are quantized by one VQ, as shown in figure 19.

The choice of criterion used in the quadtree decomposition is one of the
most important factors in the design of a quadtree-based VQ.

Q1

Q2

Figure 19. Vector quantization of quadtree leaf nodes.

5.2 Optimal Quadtree in the Rate-Distortion Sense

Quadtree decomposition for vector quantization can take into account the
distortion introduced by the VQ. An optimal decomposition algorithm, in
the rate-distortion sense, was introduced by Sullivan and Baker [17]. The
algorithm attempts to minimize a constrained error function defined as
follows:

Eq = d(X,Qq(X)) + λ · bq, (18)

where d is the distortion introduced in quantizing the block k with a par-
ticular tree structure q, and bq is the total number of bits used to represent
the tree and the quantization indices. The Lagrangian λ controls the trade-
off between the bit rate and distortion; it determines the operating point on
the R-D curve, as explained in section 4.8.2.

Consider a block Xm of size 2m × 2m and its descendents Xm−1
i , i = 1 . . . 4.

Let the distortion of quantizing the blocks Xm−1
i with the optimal quantizer

be dm−1
i , and the number of bits necessary to optimally quantize Xm−1

i be
bm−1
i . Similarly, let the distortion of quantizing the block Xm be dm, and

the number of bits be bm. The four blocks Xm−1 are merged and coded as
a single block of size 2m × 2m if the following condition is true:

dm + λbm ≤
∑
i

dm−1
i + λ

∑
i

bm−1
i . (19)

The above criterion can be used to prune the tree in a bottom-up manner to
obtain the R-D optimized hierarchical quantization scheme.
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5.3 Video Compression Using Quadtree-Based Vector Quantization

The residual signal generated by the motion-compensation algorithm can
be compressed by the quadtree VQ [18]. The residual signal r0(i, j, t) is di-
vided into blocks of size 2m×2m. Each of these blocks is encoded by the R-
D optimized, quadtree-based VQs. A k-stage hierarchical VQ uses k VQs,
which work blocks of size 2n × 2n, n = m, . . . ,m− k. The quadtree bitmap
is encoded as shown in figure 20.

We have implemented a video compression system using the quadtree VQ
that we describe here. A simulation framework similar to that used in the
RVQ video codec was used in evaluating the performance of the quadtree-
VQ-based video compression algorithm. The residual signal after motion
compensation was compressed by a three-stage quadtree VQ. The three
quantizers used blocks of size 16×16, 8×8, and 4×4, respectively. Results
are given for an encoder that uses scalar quantizers for blocks of size 16×16
and 8×8. Blocks of 4×4 are compressed by a VQ trained by the GLA algo-
rithm. The quadtree was segmented with the R-D optimized algorithm. We
tested the performance using the “salesman” sequence at three very low bit
rates, as we did for the motion-compensated RVQ video codec. The perfor-
mance of the quadtree-VQ compression algorithm was numerically similar
to that of the RVQ compression algorithm. Figure 15 shows the PSNR re-
sults of each reconstructed frame at three different bit rates. Figures 16c,
17c, and 18c show the reconstructed 48th frames for the salesman sequence
compressed at the three different bit rates by the quadtree-VQ encoder. As
these figures show, the performance of the quadtree-VQ encoder is similar
to that of the RVQ encoder at all the bit rates.
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Figure 20. Encoding quadtree data structure.
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6. Conclusions

In this report, we have explored two vector-quantization-based video com-
pression algorithms. In our work we have identified two important areas
that can be exploited to improve upon existing coding methods:

1. Multiscale segmentation: different areas in the image are coded at dif-
ferent scales. In vector quantization, this is equivalent to using differ-
ent block sizes for different areas.

2. Multirate coding: different areas in the image are coded at differ-
ent precisions, since all areas of the image do not contain the same
amount of information.

We have used two different methods to achieve the above goals. In the
RVQ-based encoder, we use the successive-refinement paradigm to achieve
a variable rate. In the quadtree-VQ encoder, the rate variability is limited,
but this technique is superior to a successive-refinement technique because
it performs direct quantization. Both algorithms use variable block sizes.
The resulting performance of these two encoders is similar, and both types
are superior to existing video compression standards.
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